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Taiwan Citizen Digital Certificate

Analysis in (Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

Asiacrypt 2013)

Many countries adopting national PKI.

Taiwan’s smart card IDs allow citizens to

• file income taxes,

• update car registrations,

• transact with government agencies,

• interact with companies (e.g.

Chunghwa Telecom) online.



Taiwan Citizen Digital Certificate

• Smart cards are issued by the government.

• FIPS-140 and Common Criteria Level 4+ certified.

• RSA keys are generated on card.

• Certificates stored on national LDAP directory. This is

publicly accessible to enable citizen-to-citizen and

citizen-to-commerce interactions.



Certificate of Chen-Mou Cheng

Data: Version: 3 (0x2)
Serial Number: d7:15:33:8e:79:a7:02:11:7d:4f:25:b5:47:e8:ad:38
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=TW, O=XXX
Validity

Not Before: Feb 24 03:20:49 2012 GMT
Not After : Feb 24 03:20:49 2017 GMT

Subject: C=TW, CN=YYY serialNumber=0000000112831644
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit) Modulus:

00:bf:e7:7c:28:1d:c8:78:a7:13:1f:cd:2b:f7:63:
2c:89:0a:74:ab:62:c9:1d:7c:62:eb:e8:fc:51:89:
b3:45:0e:a4:fa:b6:06:de:b3:24:c0:da:43:44:16:
e5:21:cd:20:f0:58:34:2a:12:f9:89:62:75:e0:55:
8c:6f:2b:0f:44:c2:06:6c:4c:93:cc:6f:98:e4:4e:
3a:79:d9:91:87:45:cd:85:8c:33:7f:51:83:39:a6:
9a:60:98:e5:4a:85:c1:d1:27:bb:1e:b2:b4:e3:86:
a3:21:cc:4c:36:08:96:90:cb:f4:7e:01:12:16:25:
90:f2:4d:e4:11:7d:13:17:44:cb:3e:49:4a:f8:a9:
a0:72:fc:4a:58:0b:66:a0:27:e0:84:eb:3e:f3:5d:
5f:b4:86:1e:d2:42:a3:0e:96:7c:75:43:6a:34:3d:
6b:96:4d:ca:f0:de:f2:bf:5c:ac:f6:41:f5:e5:bc:
fc:95:ee:b1:f9:c1:a8:6c:82:3a:dd:60:ba:24:a1:
eb:32:54:f7:20:51:e7:c0:95:c2:ed:56:c8:03:31:
96:c1:b6:6f:b7:4e:c4:18:8f:50:6a:86:1b:a5:99:
d9:3f:ad:41:00:d4:2b:e4:e7:39:08:55:7a:ff:08:
30:9e:df:9d:65:e5:0d:13:5c:8d:a6:f8:82:0c:61:
c8:6b

Exponent: 65537 (0x10001)

.

.

.



A nice student project...

April 2012: Downloaded all certificates from LDAP server:

• 2,300,000 1024-bit RSA public keys

• 740,000 2048-bit RSA public keys (issued since 2010)

HITCON 2012 (July 20–21):

Prof. Li-Ping Chou presents “Cryptanalysis in real life”

(based on work with Yun-An Chang and Chen-Mou Cheng)

• Factored 103 RSA-1024 public keys with GCD algorithm

• Wrote report that some keys are factored, informed

MOI.

• MOI promised to replace cards of affected users.
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Investigating the factors...

Most common factor appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such a pattern.
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How is this pattern generated?

1100100100100100001001001001001000100100100100101001001001001001

1001001001001001010010010010010001001001001001000010010010010010

0010010010010010100100100100100110010010010010010100100100100100

0100100100100100001001001001001000100100100100101001001001001001

1001001001001001010010010010010001001001001001000010010010010010

0010010010010010100100100100100110010010010010010100100100100100

0100100100100100001001001001001000100100100100101001001001001001

1001001001001001010010010010010001001001001001000010010011100101



How is this pattern generated?

Swap every 16 bits in a 32 bit word

0010010010010010110010010010010010010010010010010010010010010010

0100100100100100100100100100100100100100100100100100100100100100

1001001001001001001001001001001001001001001001001001001001001001

0010010010010010010010010010010010010010010010010010010010010010

0100100100100100100100100100100100100100100100100100100100100100

1001001001001001001001001001001001001001001001001001001001001001

0010010010010010010010010010010010010010010010010010010010010010

0100100100100100100100100100100100100100111001010100100100100100



How is this pattern generated?

Realign

001001001001001011001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

001001001001001001001001001001001001001001001001001001001001001001

00100100100100100100100100111001010100100100100100



How is this pattern generated?

Realign
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The 119 factors had patterns of period 1, 3, 5, and 7.



Shared prime generation

Hypothesized key generation process for weak primes:

1. Choose a bit pattern of length 1, 3, 5, or 7 bits.

2. Repeat it to cover 512 bits.

3. For every 32-bit word, swap the lower and upper 16 bits.

4. Fix the most significant two bits to 11.

5. Find the next prime greater than or equal to this

number.

Factoring by trial division
Enumerating all patterns of this form factored 18 more keys.

Extending to patterns of length 9 gave us 4 more keys.
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Some more prime factors

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000101ff

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000100000177

Hypothesis: There might be more prime factors of the form

p = 2511 + 2510 + x
where x is “small”.
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What’s wrong with this RSA example?

message = Integer(’squeamishossifrage’,base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
’squeamishossifrage’

The message is too small.

This is why we use padding.
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N = random_prime(2^128)*random_prime(2^128)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message^3 % N

a = Integer(’thepasswordfortodayisxxxxxxxxx’,base=35)

X = Integer(’xxxxxxxxx’,base=35)
M = matrix(7)

M is coefficient vectors of polynomialsN2,N2xX ,N2(xX)2,N((a+ xX)3 − c), . . . , ((a+ xX)3 − c)2.
B = M.LLL()
f = sum(B[0][i]*(x/X)^i for i in range(7))

sage: f.factor()[0]
(x + 11340606574691, 1)

sage: (a-11340606574691).str(base=35)
’thepasswordfortodayisswordfish’
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N = random_prime(2^128)*random_prime(2^128)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message^3 % N

This is a stereotyped message. We might be

able to guess the format.

a = Integer(’thepasswordfortodayisxxxxxxxxx’,base=35)

X = Integer(’xxxxxxxxx’,base=35)
M = matrix(7)

M is coefficient vectors of polynomialsN2,N2xX ,N2(xX)2,N((a+ xX)3 − c), . . . , ((a+ xX)3 − c)2.
B = M.LLL()
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What’s going on here? Coppersmith’s method.

Theorem (Coppersmith)

We can efficiently compute up to 1/e-fraction of the bits of anRSA-encrypted message with public exponent e if we know therest of the plaintext.
Theorem (Coppersmith)

Given a polynomial f of degree d and N, we can efficiently findall roots ri satisfying
f (ri) ≡ 0 mod N

when |ri| < N1/d.
The stereotyped message problem gives us an a satisfying

(a+ x)3 − c ≡ 0 mod N



Why is this an interesting theorem?

1. A general method to solve polynomials mod N would
break RSA: xe − c ≡ 0 mod N

2. There is an efficient algorithm to solve equations mod

primes.

• For a composite, factor into primes, solve mod each

prime, and use Chinese remainder theorem to lift

solution mod N.
3. By accepting a bound on solution size, Coppersmith’s

method lets us solve equations without factoring N.



Coppersmith’s Algorithm Outline

Input: polynomial f , modulus N
1. Construct a matrix of coefficient vectors of powers of f
and N: Nk, xNk, . . . ,Nk−1f , . . . , f k, xf k, . . .

2. Run a lattice basis reduction algorithm on this matrix.

3. Construct a polynomial Q from the shortest vector
output.

4. Factor Q to find its roots.



What is a lattice?

Definition

A lattice is a set of points in space
generated by integer linear

combinations of some basis vectors

{b1, . . . ,bn}.
Theorem (LLL)

We can find a vector of length
|v| < 2dim L(det L)1/dim L

b1

b2



Lattices in practice

• We use LLL as a black box.

• In practice, LLL finds vectors of

length 1.02dim L(det L)1/dim L for
random inputs.

Open problem: Explain this
behavior. (Nguyen, Stehle 2006)

• All our lattices are small

dimension, so ignore

approximation factor.

• All our matrices are diagonal,

so det L is product of diagonal
entries.

b1

b2



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

a = p - (p % 2^86)

X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.LLL()

f = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: f.factor()[0]
(x - 2775338500016599864377709, 1)

sage: a+2775338500016599864377709 == p
True



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

a = p - (p % 2^86)

sage: hex(a)
’a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190
76e3294d16ffcaef629e2937a03592895b29b0ac708e79830
4330240bc000000000000000000000’

Key recovery from partial information.

X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.LLL()

f = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: f.factor()[0]
(x - 2775338500016599864377709, 1)

sage: a+2775338500016599864377709 == p
True
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Partial key recovery and finding solutions modulo

divisors

Theorem (Coppersmith)

Given half the bits (most or least significant) of p, we can factorN in polynomial time.
Theorem (Howgrave-Graham)

Given degree d polynomial f , integer N, we can find roots rmodulo divisors B of N satisfying
f (r) ≡ 0 mod B

for |B| > Nβ , when |r| < Nβ2/d.
For RSA partial key recovery, we have

f (x) = a+ x
and we want to find a solution vanishing modulo p ≈ N1/2.



Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

• Can factor given 1/2 bits of p. [Coppersmith 96]
• Can factor given 1/4 bits of d. [Boneh Durfee Frankel 98]
• Can factor given 1/2 bits of d mod (p− 1). [Blömer May
03]



Factoring Taiwanese keys from partial information

Previously: not clear what kind of natural attack would reveal
half the bits of a factor.

Taiwanese cards: We observed RNG getting “stuck”. What if
RNG becomes unstuck in least significant bits?

Exactly scenario from first example:

• A 3-dimensional lattice can let us find errors as big asN1/6.
• Ran 3-dimensional lattice with every pattern against

every key (1 hour per pattern, 164 patterns).

• Factored 39 new keys (and all but 2 of keys factored via

GCD).



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

d = random_prime(floor(N^(1/4))/2)
e = inverse_mod(d,(p-1)*(q-1))

d is relatively small. (But not that small.)

X = ceil(N^(1/4)/2); Y = ceil(N^(1/2))
M = matrix([[X*Y, -X*(N+1), -1], [0, e*X, 0], [0,0,e]])

B = M.LLL()

sage: B[0][0]/(X*Y) == (e*d-1)/((p-1)*(q-1))
True
sage: k = B[0][0]/(X*Y)
sage: p+q == (1-B[0][1]/X)/k
True
sage: s = (1-B[0][1]/X)/k
sage: (1+k*(N-s+1))/e == d
True
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M = matrix([[X*Y, -X*(N+1), -1], [0, e*X, 0], [0,0,e]])

B = M.LLL()

sage: B[0][0]/(X*Y) == (e*d-1)/((p-1)*(q-1))
True
sage: k = B[0][0]/(X*Y)
sage: p+q == (1-B[0][1]/X)/k
True
sage: s = (1-B[0][1]/X)/k
sage: (1+k*(N-s+1))/e == d
True



Small RSA private exponent: Bivariate Coppersmith

Theorem (Wiener)

We can efficiently compute d when d < N1/4.
Theorem (Boneh Durfee)

We can efficiently compute d when d < N0.292.
The RSA equation is

ed ≡ 1 mod (p− 1)(q− 1)
ed = 1+ k(N− (p+ q) + 1)

Boneh and Durfee use Coppersmith’s method to find small

solutions x = k, y = (p+ q) to
xy − (N+ 1)x − 1 ≡ 0 mod e



Multivariate Coppersmith

Scenario: Given multivariate polynomial f (x1, . . . , xm) and
wish to find roots

f (r1, . . . , rm) ≡ 0 mod N
Same approach works in this case, with some tweaks:

• To find solutions we solve a system ofm equations
taken from the short vectors in our lattice.

• Theorems are generally heuristic because we don’t

know solution set is finite.

• Results are more ad hoc in general.

Open problem: Give a useful characterization of when
multivariate Coppersmith’s method produces algebraically

independent equations.



ffffaa55ffffffffff3cd9fe3ffff676
fffffffffffe00000000000000000000
00000000000000000000000000000000
0000000000000000000000000000009d

c000b800000000000000000000000000
00000000000000000000000000000000
00000680000000000000000000000000
00000000000000000000000000000251



Factoring Taiwanese keys with bivariate

Coppersmith

Returning to Taiwan example. What if RNG becomes stuck

after most significant bits?

Want to find solutions to the equation

a+ 2tx + y ≡ 0 mod p
This lets us factor keys with pattern errors in most, least, or

middle bits by setting t.
Ran on 20 most common patterns and factored 13 more

keys.



Factoring with Bivariate Coppersmith

Search for prime factors of the form

p = a+ 2tx + y

Algorithm (Expected Algorithm)

1. Generate lattice from multiples of f (x, y) = a+ 2tx + y, N.
2. Run LLL and take two short polynomials Q1(x, y), Q2(x, y).
3. Solve for r1, r2 satisfying Q1(r1, r2) = Q2(r1, r2) = 0.
4. Check if gcd(a+ 2tr1 + r2,N) is nontrivial.
• Analysis says 10-dimensional lattices let us solve for

|r1r2| < N1/10.
• For 1024-bit N, should have |r1r2| < 2102.
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Factoring with Bivariate Coppersmith
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Tricky Details: Algebraic Dependence

• Need two equations Q1(x, y), Q2(x, y).
• Coefficient vectors in lattice are linearly independent,

but polynomials might have algebraic relation.

Assumption

The short vectors of the LLL-reduced basis correspond toalgebraically independent polynomials.
This assumption failed in our experiments.
• In most cases polynomials shared linear common

factors q1x + q2y + q3 = 0
and thus had infinitely many potential solutions.

• By experimenting, we learned that the smallest solution
seemed to work.
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Tricky Details: Theory vs. Practice

Solution Sizes

• Standard analysis told us algorithm should work with

lattice dimension ≥ 10.

• But in practice lattice dimension 6 worked!

Patterns

• When we experimented with pattern

x000 . . .000y
method also found factors of form

x9924 . . .4929y
and other repeating patterns!



Experimental Results

dim XY offsets patterns keys factored running time

6 24 5 1 104 4.3 hours

6 24 1 164 154 195 hours

10 2100 1 1 112 2 hours

15 2128 5 1 108 20 hours

11 additional keys factored.



Bivariate Coppersmith details

A mystery: The attack worksmuch better in practice than
theory guarantees.

Smallest lattice with guaranteed solution has dimension 10.

But dimension 6 worked too.

Open problem: Why?

For finding solution, equations were not algebraically

independent, but could find a solution anyway.

Open problem: Why?
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Why are government-certified smartcards

generating weak keys?

Best practices and standards in hardware random number

generation require

• designers to characterize the entropy generated by

circuits

• testing of the signal from the entropy source at run time

• post-processing by running output through

cryptographic hash function

Card behavior very clearly not FIPS-compliant.

Hypothesized failure:

• Hardware RNG has underlying weakness that causes

failure in some situations.

• Card software not operated in FIPS mode

=⇒ no testing or post-processing RNG output.
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Disclosure and Response

• Disclosure to Taiwanese government in April 2012, June

2013.

• July 2012: MOICA replaced cards for GCD vulnerable

certificates.

• July 2013: MOICA told us they planned to replace full

“bad batch” of cards.



Disclosure and Response

August 2013: From Email to Research Team

“It took more effort than we expected to locate the affected

cards. . .Now, we believe that have revoked all the

problematic certificates we found and informed those

affected cards holder to replace their cards. Furthermore,

we are now implementing the coppersmith method based

on your paper to double confirm that there are no any

affected cards slipped away.”

September 2013: Public Press Release (In Chinese)

“Regarding the internet news about CDC weak keys and how

we have dealt with this problem. . . the paper cited in the

news is a result of government sponsored research. . . As a

result, we have replaced all vulnerable cards in July

2012. . . So all the keys used now are safe.”
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Conclusions

Widely used crypto can fail in interesting ways that affect

real-world security.

Entropy generation is a hard problem and failures can be

masked in cryptographic output.

Complex systems can experience cascading failures that

make otherwise good crypto trivial to break.

We’ve seen several examples of these failures that weren’t

detected until we beat some public keys over the head with

math.
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