
Exploiting poor randomness:
RSA, DSA, and ECDSA

disasters
Nadia Heninger

University of Pennsylvania

October 14, 2014

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key
N = pqmodulus
e encryption
exponent

Private Key
p,q primes
d decryption exponent
(d = e−1 mod (p− 1)(q− 1))

Encryption

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key
N = pqmodulus
e encryption
exponent

Private Key
p,q primes
d decryption exponent
(d = e−1 mod (p− 1)(q− 1))

Signing

public key = (N, e)

signature = messaged mod N

message = signaturee mod N

Are repeated public exponents a problem?
RSA Public Keys
N = pqmodulus
e encryption
exponent

TLS e values
65537 5,689,766
17 39,637
3 19,629
35 6,272
5 418
7 201
47 94
11 80
59 77

65535 44
37 13

44611 13
13 8

65543 7
2147483647 7

65539 6
257 5
19 3

4097 3
55501 3

Are repeated public moduli a problem?

Public Key
N = pqmodulus
e encryption
exponent

Private Key
p,q primes
d decryption exponent
(d = e−1 mod (p− 1)(q− 1))

• Two hosts share N: → both know private key of the
other. Factorization is unique.

Hosts share the same public and private keys, and can
decrypt and sign for each other.

What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique
public keys.

HTTPS:
default certificates/keys:
670,000 hosts (5%)
low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

What happens if we look for repeated moduli?
> 60% of HTTPS and SSH hosts served non-unique
public keys.
Many valid (and common) reasons to share keys:
• Shared hosting situations. Virtual hosting.
• A single organization registers many domain names
with the same key.

• Expired certificates that are renewed with the same key.

HTTPS:
default certificates/keys:
670,000 hosts (5%)
low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

What happens if we look for repeated moduli?
> 60% of HTTPS and SSH hosts served non-unique
public keys.
Common (and unwise) reasons to share keys:
• Device default certificates/keys.
• Apparent entropy problems in key generation.

HTTPS:
default certificates/keys:
670,000 hosts (5%)
low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

What happens if we look for repeated moduli?
> 60% of HTTPS and SSH hosts served non-unique
public keys.
Common (and unwise) reasons to share keys:
• Device default certificates/keys.
• Apparent entropy problems in key generation.

HTTPS:
default certificates/keys:
670,000 hosts (5%)
low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

Subjects of most repeated TLS Certificates
C=TW, ST=HsinChu, L=HuKou, O=DrayTek Corp., OU=DrayTek Support, CN=Vigor Router
C=UA, ST=Califonia, L=Irvine, O=Broadcom, OU=Broadband, CN=Daniel/emailAddress=kiding@broadcom.com
C=US, ST=AL, L=Huntsville, O=ADTRAN, Inc., CN=NetVanta/emailAddress=tech.support@adtran.com
C=CA, ST=Quebec, L=Gatineau, O=Axentraserver Default Certificate 863B4AB, CN=localdomain/emailAddress=support@axentra.com
C=US, ST=California, L=Santa Clara, O=NETGEAR Inc., OU=Netgear Prosafe, CN=NetGear/emailAddress=support@netgear.com
C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain
C=US, ST=Texas, L=Round Rock, O=Dell Inc., OU=Remote Access Group, CN=iDRAC6 default certificate
C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain
C=IN, ST=WA, L=WA, O=lxlabs, OU=web, CN=*.lxlabs.com/emailAddress=sslsign@lxlabs.com
C=TW, ST=none, L=Taipei, O=NetKlass Techonoloy Inc, OU=NetKlass, CN=localhost
C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain
C=US, CN=ORname_Jungo: OpenRG Products Group
C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain
C=LT, L=Kaunas, O=Ubiquiti Networks Inc., OU=devint, CN=ubnt/emailAddress=support@ubnt.com
C=PL, ST=Some-State, O=Mini Webservice Ltd
C=US, ST=Texas, L=Round Rock, O=Dell Inc., OU=Remote Access Group, CN=DRAC5 default certificate
C=AU, ST=Some-State, O=Internet Widgits Pty Ltd, CN=TS Series NAS
C=DE, ST=NRW, L=Wuerselen, O=LANCOM Systems, OU=Engineering, CN=www.lancom systems.de/emailAddress=info@lancom-systems.de

x509 Subject Alt Name of Repeated Trusted TLS
Certificates
DNS:*.opentransfer.com, DNS:opentransfer.com
DNS:*.home.pl, DNS:home.pl
DNS:a248.e.akamai.net, DNS:*.akamaihd.net, DNS:*.akamaihd-staging.net
DNS:*.c11.hesecure.com, DNS:c11.hesecure.com
DNS:*.pair.com, DNS:pair.com
DNS:*.c12.hesecure.com, DNS:c12.hesecure.com
DNS:*.c10.hostexcellence.com, DNS:c10.hostexcellence.com
DNS:*.securesitehosting.net, DNS:securesitehosting.net
DNS:*.sslcert19.com, DNS:sslcert19.com
DNS:*.c11.ixsecure.com, DNS:c11.ixsecure.com
DNS:*.c9.hostexcellence.com, DNS:c9.hostexcellence.com
DNS:*.naviservers.net, DNS:naviservers.net
DNS:*.c10.ixwebhosting.com, DNS:c10.ixwebhosting.com
DNS:*.google.com, DNS:google.com, DNS:*.atggl.com, DNS:*.youtube.com, DNS:youtube.com, DNS:*.youtube-nocookie.com, DNS:youtu.be, DNS:*.ytimg.com, DNS:*.google.com.br, DNS:*.google.co.in, DNS:*.google.es, DNS:*.google.co.uk, DNS:*.google.ca, DNS:*.google.fr, DNS:*.google.pt, DNS:*.google.it, DNS:*.google.de, DNS:*.google.cl, DNS:*.google.pl, DNS:*.google.nl, DNS:*.google.com.au, DNS:*.google.co.jp, DNS:*.google.hu, DNS:*.google.com.mx, DNS:*.google.com.ar, DNS:*.google.com.co, DNS:*.google.com.vn, DNS:*.google.com.tr, DNS:*.android.com, DNS:*.googlecommerce.com
DNS:*.hospedagem.terra.com.br
DNS:*.c8.ixwebhosting.com, DNS:c8.ixwebhosting.com
DNS:www.control.tierra.net, DNS:control.tierra.net

Classifying repeated SSH host keys

104

105

50 most repeated RSA SSH keys

N
um

be
ro

fr
ep

ea
ts

Devices
Hosting providers
Unknown/other

Debian OpenSSL Weak Keys
31,111 (0.34%) of RSA SSH hosts

Durumeric Wustrow Halderman 2013

Two hosts share N and have different e?

Amusing Textbook RSA vulnerability.
Two hosts share N and have different e: (e1,N) (e2,N).

Suppose same messagem is encrypted to both hosts:

c1 = me1 mod N c2 = me2 mod N
If e1, e2 relatively prime, can write ae1 + be2 = 1. Then

ca1cb2 = mae1mbe2 = m

Looked for keys with this property, didn’t find any.

Two hosts share N and have different e?

Amusing Textbook RSA vulnerability.
Two hosts share N and have different e: (e1,N) (e2,N).
Suppose same messagem is encrypted to both hosts:

c1 = me1 mod N c2 = me2 mod N

If e1, e2 relatively prime, can write ae1 + be2 = 1. Then

ca1cb2 = mae1mbe2 = m

Looked for keys with this property, didn’t find any.

Two hosts share N and have different e?

Amusing Textbook RSA vulnerability.
Two hosts share N and have different e: (e1,N) (e2,N).
Suppose same messagem is encrypted to both hosts:

c1 = me1 mod N c2 = me2 mod N
If e1, e2 relatively prime, can write ae1 + be2 = 1. Then

ca1cb2 = mae1mbe2 = m

Looked for keys with this property, didn’t find any.

Two hosts share N and have different e?

Amusing Textbook RSA vulnerability.
Two hosts share N and have different e: (e1,N) (e2,N).
Suppose same messagem is encrypted to both hosts:

c1 = me1 mod N c2 = me2 mod N
If e1, e2 relatively prime, can write ae1 + be2 = 1. Then

ca1cb2 = mae1mbe2 = m

Looked for keys with this property, didn’t find any.

What could go wrong: Shared factors

If two RSA moduli share a common factor,
N1 = pq1 N2 = pq2

gcd(N1,N2) = p

You can factor both keys with GCD algorithm.

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs

What could go wrong: Shared factors

If two RSA moduli share a common factor,
N1 = pq1 N2 = pq2

gcd(N1,N2) = p

You can factor both keys with GCD algorithm.

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs

Do we actually expect to find key collisions in the
wild?

Experiment: Compute GCD of each pair Mmoduli
randomly chosen from P primes.
What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1−e−2M2/P

1 1020 1040 1060 1080 10100
0

1

Earth’s population #atoms in Earth #atoms in universe

#moduli M

P
[n
on

tr
iv
ia
l
gc
d
]

Do we actually expect to find key collisions in the
wild?

Experiment: Compute GCD of each pair Mmoduli
randomly chosen from P primes.
What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1−e−2M2/P

1 1020 1040 1060 1080 10100
0

1

Earth’s population #atoms in Earth #atoms in universe

#moduli M

P
[n
on

tr
iv
ia
l
gc
d
]

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Naively computing pairwise GCDs
Euclid’s algorithm gcd(a,b)
if b = 0:

return a
else:

return gcd(b,amod b)
a,b have n bits→ O(n2) time.

Use fast integer arithmetic
for O(n(lgn)2 lg lgn) time.
“Fast multiplication and its
applications” Bernstein 2008

Naive pairwise GCDs:

for all pairs (Ni,Nj):
if gcd(Ni,Nj) 6= 1:

add (Ni,Nj) to list

15µs×
(14× 106

2
)
pairs

≈ 1100 years

Efficiently computing pairwise GCDs
An efficient algorithm due to [Bernstein 2004].

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd(,N1) gcd(,N2)gcd(,N3) gcd(,N4)

product
tree

remainder
tree

O(mnpolylog(mn)) time form n-bit integers, a few hours for
datasets. Implementation available at https://factorable.net.

What happens if we compute GCDs of some RSA
moduli?

What does happen when we GCD all the keys?

Compute private keys for
• 64,081 HTTPS servers (0.50%).
• 2,459 SSH servers (0.03%).
• 2 PGP users (and a few hundred invalid keys).

What happens if we compute GCDs of some RSA
moduli?

What does happen when we GCD all the keys?
Compute private keys for
• 64,081 HTTPS servers (0.50%).
• 2,459 SSH servers (0.03%).
• 2 PGP users (and a few hundred invalid keys).

... only two of the factored https certificates were signed by
a CA, and both are expired. The web pages aren’t active.

Subject information for certificates:
CN=self-signed, CN=system generated, CN=0168122008000024
CN=self-signed, CN=system generated, CN=0162092009003221
CN=self-signed, CN=system generated, CN=0162122008001051
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072011000074
CN=self-signed, CN=system generated, CN=0162122009008149
CN=self-signed, CN=system generated, CN=0162122009000432
CN=self-signed, CN=system generated, CN=0162052010005821
CN=self-signed, CN=system generated, CN=0162072008005267
C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication
CN=self-signed, CN=system generated, CN=0162082009008123
CN=self-signed, CN=system generated, CN=0162072008005385
CN=self-signed, CN=system generated, CN=0162082008000317
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072008005597
CN=self-signed, CN=system generated, CN=0162072010002630
CN=self-signed, CN=system generated, CN=0162032010008958
CN=109.235.129.114
CN=self-signed, CN=system generated, CN=0162072011004982
CN=217.92.30.85
CN=self-signed, CN=system generated, CN=0162112011000190
CN=self-signed, CN=system generated, CN=0162062008001934
CN=self-signed, CN=system generated, CN=0162112011004312
CN=self-signed, CN=system generated, CN=0162072011000946
C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)
CN=self-signed, CN=system generated, CN=0162102011001174
CN=self-signed, CN=system generated, CN=0168112011001015
CN=self-signed, CN=system generated, CN=0162012011000446
CN=self-signed, CN=system generated, CN=0162112011004041
CN=self-signed, CN=system generated, CN=0162112011000617
CN=self-signed, CN=system generated, CN=0162042011006791
CN=self-signed, CN=system generated, CN=0162072011005063
CN=self-signed, CN=system generated, CN=0162122008003402
CN=self-signed, CN=system generated, CN=0162072011005032
CN=self-signed, CN=system generated, CN=0162042011005343
CN=self-signed, CN=system generated, CN=0162012008002101
CN=self-signed, CN=system generated, CN=0162072008005492
CN=self-signed, CN=system generated, CN=0162092008000776
CN=self-signed, CN=system generated, CN=0162092008000852
CN=self-signed, CN=system generated, CN=0162112008000044

... only two of the factored https certificates were signed by
a CA, and both are expired. The web pages aren’t active.
Subject information for certificates:
CN=self-signed, CN=system generated, CN=0168122008000024
CN=self-signed, CN=system generated, CN=0162092009003221
CN=self-signed, CN=system generated, CN=0162122008001051
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072011000074
CN=self-signed, CN=system generated, CN=0162122009008149
CN=self-signed, CN=system generated, CN=0162122009000432
CN=self-signed, CN=system generated, CN=0162052010005821
CN=self-signed, CN=system generated, CN=0162072008005267
C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication
CN=self-signed, CN=system generated, CN=0162082009008123
CN=self-signed, CN=system generated, CN=0162072008005385
CN=self-signed, CN=system generated, CN=0162082008000317
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072008005597
CN=self-signed, CN=system generated, CN=0162072010002630
CN=self-signed, CN=system generated, CN=0162032010008958
CN=109.235.129.114
CN=self-signed, CN=system generated, CN=0162072011004982
CN=217.92.30.85
CN=self-signed, CN=system generated, CN=0162112011000190
CN=self-signed, CN=system generated, CN=0162062008001934
CN=self-signed, CN=system generated, CN=0162112011004312
CN=self-signed, CN=system generated, CN=0162072011000946
C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)
CN=self-signed, CN=system generated, CN=0162102011001174
CN=self-signed, CN=system generated, CN=0168112011001015
CN=self-signed, CN=system generated, CN=0162012011000446
CN=self-signed, CN=system generated, CN=0162112011004041
CN=self-signed, CN=system generated, CN=0162112011000617
CN=self-signed, CN=system generated, CN=0162042011006791
CN=self-signed, CN=system generated, CN=0162072011005063
CN=self-signed, CN=system generated, CN=0162122008003402
CN=self-signed, CN=system generated, CN=0162072011005032
CN=self-signed, CN=system generated, CN=0162042011005343
CN=self-signed, CN=system generated, CN=0162012008002101
CN=self-signed, CN=system generated, CN=0162072008005492
CN=self-signed, CN=system generated, CN=0162092008000776
CN=self-signed, CN=system generated, CN=0162092008000852
CN=self-signed, CN=system generated, CN=0162112008000044

Attributing SSL and SSH vulnerabilities to
implementations

Evidence strongly suggested widespread implementation
problems.
Clue #1: Vast majority of weak keys generated by network
devices:

• Juniper network security devices
• Cisco routers
• IBM server management cards
• Intel server management cards
• Innominate industrial-grade firewalls
• . . .

Identified devices from > 50
manufacturers

Attributing SSL and SSH vulnerabilities to
implementations

Evidence strongly suggested widespread implementation
problems.
Clue #2: Very different behavior for different devices.
Different companies, implementations, underlying software,
distributions of prime factors.

Distribution of prime factors
IBM Remote Supervisor Adapter II and Bladecenter Management Module

0

50

100

M
od

ul
us

fr
eq

ue
nc

y

Distribution of prime factors
Juniper SRX branch devices

100

101

102

103

M
od

ul
us

fr
eq

ue
nc

y

Random number generation in software

crypto keys

application pseudoran-
dom number generator

time

OS entropy pool

pid

Random number generation in software

crypto keys

application pseudoran-
dom number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

• OS random number generator
may not have incorporated any
entropy when queried by
software.

• Headless or embedded devices
may lack these entropy sources.

Random number generation in software

crypto keys

application pseudoran-
dom number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

• OS random number generator
may not have incorporated any
entropy when queried by
software.

• Headless or embedded devices
may lack these entropy sources.

Random number generation in software

crypto keys

application pseudoran-
dom number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

• OS random number generator
may not have incorporated any
entropy when queried by
software.

• Headless or embedded devices
may lack these entropy sources.

Linux boot-time entropy hole
Experiment: Instrument Linux kernel to track entropy
estimates.
Ubuntu Server 10.04

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

SSH urandom read(32)

Threshold to add kernel randomness

Time since boot (s)

In
pu

tp
oo

le
nt

ro
py

(b
its

)

0

5,000

10,000

15,000

20,000

25,000

B
yt

es
re

ad
fr

om
no

nb
lo

ck
in

g
po

ol

Input pool entropy estimate
Input threshold to update entropy pool
Bytes read from nonblocking pool
SSH process seeds from /dev/urandom

SSH process starts entropy pool updated
Patched since July 2012.

Generating vulnerable RSA keys in software
• Insufficiently random seeds for pseudorandom number
generator =⇒ we should see repeated keys.

prng.seed()
p = prng.random_prime()
q = prng.random_prime()
N = p*q

• We do:
• > 60% of hosts share keys
• At least 0.3% due to bad randomness.

• Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?

Generating factorable RSA keys in software
prng.seed()
p = prng.random_prime()
prng.add_randomness()
q = prng.random_prime()
N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

device 1

device 2

time=0 time=1

← generating p → ← generating q →

Experimentally verified OpenSSL generates factorable keys
in this situation.

Experimentally generating factorable keys in
OpenSSL

Experiment: Generate keys in OpenSSL with time as only
entropy source.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8

16

24

32

Starting clock time t0 (seconds)

Ti
m

e
di

la
tio

n
fa

ct
or

(s
lo

w
er
→

)

Fraction of keys generated that we could factor

0

0.2

0.4

0.6

clock tick

time as entropy source + asynchronous clocks→ factorable
keys

Unexplained oddities

Here are some prime factors of SSH keys (changed to
protect the guilty):
d80000000000000...00000000000000000000000000000000001b3
bc0000000000000...00000000000000000000000000000000000c9
c60000000000000...00000000000000000000000000000000001ae

Unexplained oddities

Here are some other prime factors of HTTPS keys we found:
c3a64ae7fc4d4d9f75cd2a49ec2d9f7...
c3a64ae7fc4d4d9f75cd2e5f2fc56c9...
c3a64ae7fc4d4d9f75cdee869c62229...

ee93536e58a60b0f56bf95faedc7ca42a9c9809a0aae2...
ee93536e58a60b0f56bf95faedc7ca42a9c9809a2cf5b...
ee93536e58a60b0f56bf95faedc7ca42a9c9809aad4a8...
ee93536e58a60b0f56bf95faedc7ca42a9c9809abb02d...
ee93536e58a60b0f56bf95faedc7ca42a9c9809acef6f...

PGP

Why did GCD factor two PGP keys?

They were both > 10 years old.

PGP uses /dev/random to generate keys.

Textbook Diffie-Hellman
[Diffie Hellman 1976]

Public Parameters
G a group (e.g. Fp, or an elliptic curve)
g group generator

Key Exchange

ga

gb

gabgab

Is a repeated ga a vulnerability?
• Yes, if unrelated parties know discrete log/private key a.
• Yes, if repeated values signal entropy issues.

ECDH TLS scans:
5.4M key exchanges 5.2M unique values.
Possible explanation: OpenSSL using ephemeral-static
ECDH. (Keys ephemeral per application instance and not per
handshake.)
121,000 values presented by > 1 IP address, most common
on 2,000 hosts.
Mostly shared hosting. One Netasq device always presents
same key for ECDHE.

Is a repeated ga a vulnerability?
• Yes, if unrelated parties know discrete log/private key a.
• Yes, if repeated values signal entropy issues.

ECDH TLS scans:
5.4M key exchanges 5.2M unique values.

Possible explanation: OpenSSL using ephemeral-static
ECDH. (Keys ephemeral per application instance and not per
handshake.)
121,000 values presented by > 1 IP address, most common
on 2,000 hosts.
Mostly shared hosting. One Netasq device always presents
same key for ECDHE.

Is a repeated ga a vulnerability?
• Yes, if unrelated parties know discrete log/private key a.
• Yes, if repeated values signal entropy issues.

ECDH TLS scans:
5.4M key exchanges 5.2M unique values.
Possible explanation: OpenSSL using ephemeral-static
ECDH. (Keys ephemeral per application instance and not per
handshake.)
121,000 values presented by > 1 IP address, most common
on 2,000 hosts.
Mostly shared hosting. One Netasq device always presents
same key for ECDHE.

The DSA Algorithm

DSA Public Key
p prime
q prime, divides (p− 1)
g generator of subgroup of
order qmod p

y = gx mod p

Verify
u1 = H(m)s−1 mod q
u2 = rs−1 mod q
r ?
= gu1yu2 mod pmod q

Private Key
x private key

Sign
Generate random k.
r = gk mod pmod q
s = k−1(H(m) + xr)mod q

ECDSA

ECDSA Public Key
G generator ∈ E(Fp)
Q = dG

Private Key
d private key

Sign
Generate random k.
(x, y) = kG r = x mod n
s = k−1(H(m) + dr)mod n

What could go wrong: Repeated keys
DSA public keys

Public key
p prime
q prime, divides (p− 1)
g generator of subgroup of order qmod p
y = gx mod p

• Two hosts have same public key→ both know private
key of the other.

What could go wrong: Weak DSA signature nonce
Public Key

p,q, g domain parameters
y = gx mod p

Private Key
x private key

Signature: (r, s1)
r = gk mod pmod q
s1 = k−1(H(m1) + xr)mod q

Signature: (r, s2)
r = gk mod pmod q
s2 = k−1(H(m2) + xr)mod q

• DSA nonce known→ easily compute private key.

s1 − s2 = k−1(H(m1)− H(m2))mod q
• DSA nonce reused to sign distinct messages→ easily
compute nonce.

What could go wrong: Weak DSA signature nonce
Public Key

p,q, g domain parameters
y = gx mod p

Private Key
x private key

Signature: (r, s1)
r = gk mod pmod q
s1 = k−1(H(m1) + xr)mod q

Signature: (r, s2)
r = gk mod pmod q
s2 = k−1(H(m2) + xr)mod q

• DSA nonce known→ easily compute private key.

s1 − s2 = k−1(H(m1)− H(m2))mod q
• DSA nonce reused to sign distinct messages→ easily
compute nonce.

What happens if we look for repeated DSA nonces?

Compute private keys for

• 105,728 (1.03%) of SSH DSA servers.

• 133 Bitcoin addresses.

Generating weak DSA signatures
Step 1: Low-entropy DSA key generation
Step 2: Low-entropy seed for PRNG generating signature
nonce.

Host 1
50
58
9
36
84
24
13
89
85

Host 2
84
24
13
89
85
68
52
69
47

Step 3: Two sequences in same state→ colliding nonces.

Compromised DSA keys from Gigaset DSL routers

100 101 102 103
100

102

104

Private key index

Fr
eq

ue
nc

y

Keys compromised by
repeated signature randomness

Bitcoin
Several explanations so far:
• Android Java RNG vulnerability publicized August 2013.
• Test implementations.
• Developer error in uncommon bitcoin implementations.

Bitcoin address 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj has
stolen 59 bitcoins from weak addresses so far.

red = vulnerable keys

Disclosure for HTTPS and SSH vulnerabilities
• Wrote disclosures to 61 companies.

• 13 had Security Incident Response Team contact
information available.

• Received responses from 28.

• 13 told us they fixed the problem

• 5 informed us of security advisories

• Coordinated through US-CERT, ICS CERT, JP-CERT

• Linux kernel has been patched.

Vendor responses
“When running the testing, would you be able to provide the
software on the .. and the firmware on the ... along with
model numbers on the”
“Attached is a document on the security the ... uses.” (It was
empty.)
“Would you be able to provide the login credentials for the 3
test IP Addresses you provided. I would like to login to the
device to gather the software and firmware installed.”
“Hi. What is your billing address, so that I can fwd your email
to the appropriate Account Executive.”
“some IT auditor somewhere is handed your paper, alarm
bells sound in his or her head, and things start to get
unnecessarily emergent, network admins start calling us,
CSIRTs start engaging us to figure out what’s going one, etc.,
etc.”

Disclosure to end-users

• Attempted to contact end-users with signed certificates
sharing keys with default certificates.

• Certificates belonged to Fortune 500 companies,
insurance providers, law firms, a major public transit
authority, and the US Navy.

Media Coverage
Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter

Factorable TLS keys over time

Mining your Ps and Qs: Widespread Weak Keys in Network Devices
Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex
Halderman Usenix Security 2012 https://factorable.net
“Ron was wrong, Whit is right” published as
Public Keys Arjen K. Lenstra, James P. Hughes, Maxime Augier,
Joppe W. Bos, Thorsten Kleinjung, and Christophe Wachter Crypto
2012

Elliptic Curve Cryptography in Practice Joppe W. Bos, J. Alex
Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig,
and Eric Wustrow Financial Cryptography 2014

