
Exploiting Poor Randomness
Nadia Heninger

University of Pennsylvania

October 13, 2014

Exploiting poor randomness
Part 1: A brief tour of PRNGs in practice. (today)
How are random numbers really generated in practice?
Part 2a: Scanning the Internet.(Tuesday morning)
How do we get cryptographic data to study?
Part 2b: RSA, DSA, and ECDSA disasters.(Tuesday morning)
Computing TLS and SSH private keys in practice.
Part 3: Lattice-based techniques.(Thursday afternoon)
Computing smartcard-generated RSA private keys.

A brief tour of PRNGs inpractice.

“Any one who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”

–John von Neumann

Theory view

DefinitionA pseudorandom generator is a polynomial-time deterministicfunction Gmapping n-bit strings into `(n)-bit strings for
`(n) ≥ n whose output distribution G(Un) is computationallyindistinguishable from the uniform distribution U`(n).

Environmentalentropy G Crypto keys

Theory view

DefinitionA pseudorandom generator is a polynomial-time deterministicfunction Gmapping n-bit strings into `(n)-bit strings for
`(n) ≥ n whose output distribution G(Un) is computationallyindistinguishable from the uniform distribution U`(n).

Environmentalentropy G Crypto keys

Problem: Environmental entropy not uniformly distributed.

Theory view

DefinitionA pseudorandom generator is a polynomial-time deterministicfunction Gmapping n-bit strings into `(n)-bit strings for
`(n) ≥ n whose output distribution G(Un) is computationallyindistinguishable from the uniform distribution U`(n).

Environmentalentropy Extractor G Crypto keys

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.

Solution: Test for randomness.
• Problem: Testing for randomness is theoreticallyimpossible.Solution: ... do as well as you can?
• Problem: Inputs might be controlled by attacker.Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.Solution: Test for randomness.

• Problem: Testing for randomness is theoreticallyimpossible.Solution: ... do as well as you can?
• Problem: Inputs might be controlled by attacker.Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.Solution: Test for randomness.
• Problem: Testing for randomness is theoreticallyimpossible.

Solution: ... do as well as you can?
• Problem: Inputs might be controlled by attacker.Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.Solution: Test for randomness.
• Problem: Testing for randomness is theoreticallyimpossible.Solution: ... do as well as you can?

• Problem: Inputs might be controlled by attacker.Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.Solution: Test for randomness.
• Problem: Testing for randomness is theoreticallyimpossible.Solution: ... do as well as you can?
• Problem: Inputs might be controlled by attacker.

Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

Practical Considerations/Threat Modeling

• Problem: Inputs might not be random.Solution: Test for randomness.
• Problem: Testing for randomness is theoreticallyimpossible.Solution: ... do as well as you can?
• Problem: Inputs might be controlled by attacker.Solution: Reseed/incorporate new entropy fromdifferent sources and hope attacker doesn’t controleverything.

NIST SP800-90A

Design Considerations

1. What do you do if output is requested before seeding?Possible answers:
1.1 Don’t provide output.1.2 Provide output.1.3 Raise an error flag.

2. How often do you reseed?Possible answers:
2.1 On every new input.2.2 After k inputs accumulated in input pools.2.3 After ` blocks of outputs requested.

Design Considerations

1. What do you do if output is requested before seeding?Possible answers:
1.1 Don’t provide output.1.2 Provide output.
1.3 Raise an error flag.

2. How often do you reseed?Possible answers:
2.1 On every new input.
2.2 After k inputs accumulated in input pools.
2.3 After ` blocks of outputs requested.

Threat Modeling

• Problem: Attacker might influence PRNG design.

NIST SP800-90A

• Parameters: Pre-specified elliptic curve points P and Q.
• Seed: 32-byte integer s
• State: x-coordinate of point sP. (φ(x(sP)) above.)
• Update: t = s⊕optional additional input. State s = x(tP).
• Output: At state s, compute x-coordinate of point x(sQ),discard top 2 bytes, output 30 bytes.

Cryptographers: Dual-EC is biased and slow.

NIST SP800-90A

• Parameters: Pre-specified elliptic curve points P and Q.
• Seed: 32-byte integer s
• State: x-coordinate of point sP. (φ(x(sP)) above.)
• Update: t = s⊕optional additional input. State s = x(tP).
• Output: At state s, compute x-coordinate of point x(sQ),discard top 2 bytes, output 30 bytes.

Cryptographers: Dual-EC is biased and slow.

Shumow and Ferguson 2007 Crypto rump session

1. Assume attacker controls standard and constructspoints with known relationship P = dQ.
2. Attacker gets 30 bytes of x-coordinate of sQ. Attackerbrute forces 216 MSBs, gets 217 possible y − coordinates,ends up with 215 candidates for sQ.
3. For each candidate sQ attacker computes dsQ = sP andcompares to next output.

September 2013: NSA Bullrun in NY Times

On the Practical Exploitability of Dual EC in TLSImplementations
Checkoway, Fredrikson, Niederhagen, Everspaugh, Green, Lange, Ristenpart,Bernstein, Maskiewicz, Shacham Usenix Security 2014

Open problem: How might we detect kleptographic attacksin practice?

Where do we put the RNG?

Hardware

Operating SystemDevice Drivers

Libraries Applications

Where do we put the RNG?

Hardware

Operating SystemDevice Drivers

Libraries Applications

Option #1

Intel RDRAND instruction

“ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR" Hamburg Kocher Marson

Intel RDRAND Design Choices

“ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR" Hamburg Kocher Marson
• Entropy source: Oscillating circuit
• Extractor/conditioning: Iterated AES-128 with fixed key.
• PRG: AES-128-CTR
• Reseeding: At least every 65536 bits of output.
• If tests fail, clear carry flag and return all 0s.

Threat Modeling

• Problem: Attacker might influence PRNG design.

• Problem: Attacker might control hardware supplychain.Solution: Audit hardware, compare to known gooddesign.
• Problem: Attacker might control hardware supply chainand be really clever.

Threat Modeling

• Problem: Attacker might influence PRNG design.
• Problem: Attacker might control hardware supplychain.

Solution: Audit hardware, compare to known gooddesign.
• Problem: Attacker might control hardware supply chainand be really clever.

Threat Modeling

• Problem: Attacker might influence PRNG design.
• Problem: Attacker might control hardware supplychain.Solution: Audit hardware, compare to known gooddesign.

• Problem: Attacker might control hardware supply chainand be really clever.

Threat Modeling

• Problem: Attacker might influence PRNG design.
• Problem: Attacker might control hardware supplychain.Solution: Audit hardware, compare to known gooddesign.
• Problem: Attacker might control hardware supply chainand be really clever.

Stealthy Dopant-Level Hardware Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013

Undetectable Trojan outputs AES with fixed k and 32-bit ctr.

Where do we put the RNG?

Hardware

Operating SystemDevice Drivers

Libraries Applications

Option #2

Linux random number generators
• heuristically measures input entropy
• input pool mixed into output once counter reaches 192bits
• CRC-based state mixing function
• output is SHA-1 hash of state

/dev/random
• blocks if insufficientrandomness available

/dev/urandom

• output never blocks

“As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys.”—man random

Misconceptions abound...

/dev/urandom can indeed run out of entropy if it is
called repeatedly.

– Random person on Bitcoin forum
/dev/random is too severe. It’s basically designed to be
an information-theoretic random source, which means
you could use its output as a one-time pad even if your
adversary were time-travelling deities with countless
universes full of quantum computers at their disposal.

– Random person on Hacker News

Blocking output is a usability problem

/* We’ll use /dev/urandom by default, since
/dev/random is too much hassle. If system developers
aren’t keeping seeds between boots nor getting any
entropy from somewhere it’s their own fault. */
#define DROPBEAR_RANDOM_DEV "/dev/urandom"

/dev/random is not robust
Dodis Pointcheval Ruhault Vergnaud Wichs CCS 2013

• Can adversarially construct inputs to fool /dev/random’sentropy estimator.
• CRC-based state mixing function does not recover wellfrom state compromise.

Open Problem: Produce attack strong enough to convinceTed Ts’o or Linus Torvalds these are real vulnerabilities.

Linux and Intel RDRAND
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for key generation, seeding
* TCP sequence numbers, etc. It does not rely on the hardware random
* number generator. For random bytes direct from the hardware RNG
* (when available), use get_random_bytes_arch().
*/

void get_random_bytes(void *buf, int nbytes)

/*
* This function will use the architecture-specific hardware random
* number generator if it is available. The arch-specific hw RNG will
* almost certainly be faster than what we can do in software, but it
* is impossible to verify that it is implemented securely (as
* opposed, to, say, the AES encryption of a sequence number using a
* key known by the NSA). So it’s useful if we need the speed, but
* only if we’re willing to trust the hardware manufacturer not to
* have put in a back door.
*/

void get_random_bytes_arch(void *buf, int nbytes)

getrandom() system call
Date: Thu, 17 Jul 2014 05:18:15 -0400
From: Theodore Ts’o <tytso@....edu>
To: linux-kernel@...r.kernel.org
Cc: linux-abi@...r.kernel.org, linux-crypto@...r.kernel.org,
beck@...nbsd.org, Theodore Ts’o <tytso@....edu>
Subject: [PATCH, RFC] random: introduce getrandom(2) system call

The getrandom(2) system call was requested by the LibreSSL Portable
developers. It is analoguous to the getentropy(2) system call in
OpenBSD.

The rationale of this system call is to provide resiliance against
file descriptor exhaustion attacks, where the attacker consumes all
available file descriptors, forcing the use of the fallback code where
/dev/[u]random is not available. Since the fallback code is often not
well-tested, it is better to eliminate this potential failure mode
entirely.

The other feature provided by this new system call is the ability to
request randomness from the /dev/urandom entropy pool, but to block
until at least 128 bits of entropy has been accumulated in the
/dev/urandom entropy pool.

Fortuna
Ferguson, Schneier, Kohno

StateInitialize

Reseed
SHA-256(s,state)state

Input Pools s

Entropy
SHA-256(input,pool)

Generate
key,counter

Output
AES-CTR(key,counter)

Design Choices

• Avoid entropy estimation by mixing inputs into manypools and mixing pools at different rates.
• Cryptographic state mixing function.
• No distinction between /dev/random and /dev/urandomon BSD-based systems using Yarrow (precursor toFortuna).

===
FreeBSD-SA-08.11.arc4random Security Advisory

The FreeBSD Project

Topic: arc4random(9) predictable sequence vulnerability

Category: core
Module: sys
Announced: 2008-11-24

...

II. Problem Description

When the arc4random(9) random number generator is initialized, there may
be inadequate entropy to meet the needs of kernel systems which rely on
arc4random(9); and it may take up to 5 minutes before arc4random(9) is
reseeded with secure entropy from the Yarrow random number generator.

Windows

RNG not publicly documented.
Dorrendorf, Gutterman, Pinkas 2007 reverse-engineeredRNG in Windows 2000.
• State refreshed every 128KB of output.
• State compromise leads to forward and backwardrecovery of all outputs for that state.

Where do we put the RNG?

Hardware

Operating SystemDevice Drivers

Libraries ApplicationsOption #3

OpenSSL PRNG

• Seeds from /dev/urandom (or /dev/random if urandomnot present), pid, time()
• time() (in seconds) mixed into state before some outputqueries.
• State mixing function is configurable but defaults toSHA-1 hash.
• Output SHA-1 hash of state.

/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
* are what we will use now, but other threads may use them
* as well */

md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);

if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

EVP_MD_CTX_init(&m);
for (i=0; i<num; i+=MD_DIGEST_LENGTH)

{
j=(num-i);
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

MD_Init(&m);
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
k=(st_idx+j)-STATE_SIZE;
if (k > 0)

{
MD_Update(&m,&(state[st_idx]),j-k);
MD_Update(&m,&(state[0]),k);
}

else
MD_Update(&m,&(state[st_idx]),j);

MD_Update(&m,buf,j);
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
MD_Final(&m,local_md);
md_c[1]++;

buf=(const char *)buf + j;

for (k=0; k<j; k++)
{
/* Parallel threads may interfere with this,
* but always each byte of the new state is
* the XOR of some previous value of its
* and local_md (itermediate values may be lost).
* Alway using locking could hurt performance more
* than necessary given that conflicts occur only
* when the total seeding is longer than the random
* state. */

state[st_idx++]^=local_md[k];
if (st_idx >= STATE_SIZE)

st_idx=0;
}

}
EVP_MD_CTX_cleanup(&m);

List: openssl-dev
Subject: Random number generator, uninitialised data and valgrind.
From: Kurt Roeckx <kurt () roeckx ! be>
Date: 2006-05-01 19:14:00

Hi,

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated in the random number generator. It’s adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
pieces of code in crypto/rand/md_rand.c:

247:
MD_Update(&m,buf,j);

467:
#ifndef PURIFY

MD_Update(&m,buf,j); /* purify complains */
#endif

...

What I currently see as best option is to actually comment out
those 2 lines of code. But I have no idea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I’m not even
sure how much entropy some unitialised data has.

What do you people think about removing those 2 lines of code?

Kurt

The Debian OpenSSL entropy disaster
August, 2008: Discovered by Luciano Bello
Keys dependent only on pid and machine architecture:294,912 keys per key size.
“When Private Keys are Public: Results from the 2008 Debian
OpenSSL Vulnerability” [Yilek, Rescorla, Shacham, Enright, Savage
2009]

Where do we put the RNG?

Hardware

Operating SystemDevice Drivers

Libraries Applications Option #4

1996 Netscape SSL RNG [Goldberg, Wagner]
global variable seed;

RNG_CreateContext()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 */
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b);

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((0xDEECE66D * x + 0x2BBB62DC) >> 1);

RNG_GenerateRandomBytes()
x = MD5(seed);
seed = seed + 1;
return x;

global variable challenge, secret_key;

create_key()
RNG_CreateContext();
tmp = RNG_GenerateRandomBytes();
tmp = RNG_GenerateRandomBytes();
challenge = RNG_GenerateRandomBytes();
secret_key = RNG_GenerateRandomBytes();

Common pattern:
Seed once from OS, maintain individual application-specificPRNG.

August 2013: Android SecureRandom vulnerability
We recently learned that a component of Android
responsible for generating secure random numbers
contains critical weaknesses, that render all Android
wallets generated to date vulnerable to theft. Because
the problem lies with Android itself, this problem will
affect you if you have a wallet generated by any
Android app.

– Bitcoin security advisory
Underlying problem: OpenSSL not fork-safe. RNG state notre-initialized on fork, so only new element to mix in is pid,which has 216 bits of entropy.

What about virtualization?

Hardware
Operating SystemDevice Drivers

Hypervisor

VirtualOperating SystemVirtualDevice Drivers

Libraries Applications

Virtual Machine Reset Vulnerabilities
Ristenpart Yilek NDSS 2010

1. Guest OS running in VM initializes RNG state.
2. User snapshots guest OS.
3. User performs actions on guest OS.
4. Guest OS reset to snapshot state.

July 2013: DigitalOcean security advisory

The SSH host keys for some Ubuntu-based systems
could have been duplicated by DigitalOcean’s snapshot
and creation process. Therefore, our system is now
configured to remove the host keys on Droplets that
are created from snapshots at the time of the first
boot.

Summary

Random number generation is hard.
Practical constraints:
• Performance
• Usability for developers
• Cross-platform software compatibility:high-performance servers, mobile devices, embeddeddevices...
• Diverse and hard to audit hardware

