SCAs against Embedded Crypto Devices

F.-X. Standaert

UCL Crypto Group, Université catholique de Louvain Lecture 3 - Side-Channel Attacks (II)

Outline

- How to evaluate cryptographic implementations?
- IT metric: conditional entropy
- Main theorem (informal)
- Security metric: success rate
- First-order DPA
- Paper & pencil estimations
- Second-order DPA

A motivating example

- Goal: fair evaluation and comparison of two implementations (AES-CMOS and AES-WDDL)
- Tool: adversary A := { correlation, H_W , 8-bit target }
 - Key recovered after q = 10 traces for AES-CMOS
 - ... and after $q = 10\ 000$ traces for AES-WDDL

AES-WDDL 1000 times more "secure" than AES-CMOS?

A motivating example

- Goal: fair evaluation and comparison of two implementations (AES-CMOS and AES-WDDL)
- Tool: adversary A := { correlation, H_W , 8-bit target }
 - Key recovered after q = 10 traces for AES-CMOS
 - ... and after $q = 10\ 000$ traces for AES-WDDL

AES-WDDL 1000 times more "secure" than AES-CMOS?

NO !

Possible issues

Possible issues

- We may be lucky (only 1 attack performed)
- Distinguisher issue
 - Correlation suboptimal
 - Maybe other distinguishers work better
- Most important: model issue !
 - Hamming weight model suboptimal for CMOS
 - ... and completely meaningless for WDDL
- Consequence: we may perform an evaluation of the adversary rather than a comparison of the implementations

Fair(er) evaluation

Requires to separate implementations and adversaries

Implementations evaluated with "optimal" profiled attacks

Information theoretic metric

- Conditional entropy and mutual information
 - ► MI(Z; L) = information leakage
 - H[Z|L] = remaining "secrecy" in Z:

$$\mathsf{H}[Z|L] = \mathsf{H}[Z] - \mathsf{MI}(Z;L)$$

More precisely:

$$H[Z] = -\sum_{z \in \mathcal{Z}} \Pr[Z = z] \cdot \log_2 \Pr[Z = z]$$

$$H[Z|L] = -\sum_{l \in \mathcal{L}} \Pr[L = l] \sum_{z \in \mathcal{Z}} H[Z|L = l]$$

$$H[Z|L] \stackrel{short}{=} -\sum_{l \in \mathcal{L}} \Pr[l] \sum_{z \in \mathcal{Z}} H[Z|l]$$

Information theoretic metric (II)

$$\begin{aligned} \mathsf{H}[Z|L] &= -\sum_{l \in \mathcal{L}} \mathsf{Pr}[l] \sum_{z \in \mathcal{Z}} \mathsf{Pr}[z|l] . \log_2 \mathsf{Pr}[z|l] \\ &= \{ \ldots \} \\ \mathsf{H}[Z|L] &= -\sum_{z \in \mathcal{Z}} \mathsf{Pr}[z] \sum_{l \in \mathcal{L}} \mathsf{Pr}[l|z] . \log_2 \mathsf{Pr}[z|l] \end{aligned}$$

 Second representation closer to actual evaluations (fix one secret, generate all leakages)

Hamming weight example

- Assume I = HW(z), with z n-bit wide
- ► Compute Pr[Z, L], Pr[Z], Pr[L], Pr[Z|L], Pr[L|Z], H[Z|L], I(Z; L), {...} HW_example_noiseless.m

Noisy Hamming weight example

- Assume I = HW(z) + n with $n \stackrel{R}{\leftarrow} \mathcal{N}(0, \sigma_n)$
- Implies using probability density functions:

$$\Pr[I|z] \stackrel{def}{\equiv} \mathcal{N}(I|\mathsf{HW}(z), \sigma_n)$$

... and differential entropies:

$$\mathsf{H}[Z|L] = -\sum_{z \in \mathcal{Z}} \mathsf{Pr}[z] \int_{I \in \mathcal{L}} \mathsf{Pr}[I|z] \log_2 \mathsf{Pr}[z|I] \, dI$$

HW_example_noise.m, HW_example_noise_fast.m

DPA setting

1. Known plaintext attack scenario:

$$\mathsf{I}(\mathcal{K}; \mathcal{X}, \mathcal{L}) = \mathsf{H}[\mathcal{K}] + \sum_{k \in \mathcal{K}} \mathsf{Pr}[k] \sum_{x \in \mathcal{X}} \mathsf{Pr}[x|k] \sum_{l \in \mathcal{L}} \mathsf{Pr}[l|k, x] \cdot \log_2 \mathsf{Pr}[k|x, l]$$

2. X is independent of K:

$$\mathsf{I}(\mathcal{K}; X, L) = \mathsf{H}[\mathcal{K}] + \sum_{k \in \mathcal{K}} \mathsf{Pr}[k] \sum_{x \in \mathcal{X}} \mathsf{Pr}[x] \sum_{l \in \mathcal{L}} \mathsf{Pr}[l|k, x] \cdot \log_2 \mathsf{Pr}[k|x, l]$$

DPA setting (II)

3. Sampling: adversary's model may be unperfect:

$$\mathsf{PI}(\mathcal{K}; \mathcal{X}, \mathcal{L}) = \mathsf{H}[\mathcal{K}] + \sum_{k \in \mathcal{K}} \mathsf{Pr}[k] \sum_{x \in \mathcal{X}} \mathsf{Pr}[x] \sum_{l \in \mathcal{L}} \Pr[l|k, x] \cdot \log_2 \Pr_{\textit{model}}[k|x, l]$$

- ▶ i.e. the perceived information can be negative
- PI(K; X, L) = I(K; X, L) if $Pr_{chip} = Pr_{model}$
- 4. $\sum_{k} \sum_{x}$ is redundant in case of key equivalence
 - It can be sufficient to compute PI(K = k; X, L)
 - sampling_1D.m

Security metric (I)

- Perceived information pprox a worst case analysis
- But independent of time complexity (e.g. enumeration)
- + practical adversaries may be suboptimal (e.g. because profiling of the chip is not possible)
- Evaluating how actual distinguishers take advantage of the leakage is the goal of security analysis
- ► Success rate = Pr[Adv(X, L(X, k)) = k]
- ► (in practice, also estimated from sampling, by launching N_e independent experiments)

Security metric (II)

Success rate against a 128-bit master key

Security metric (II)

Success rate against a 128-bit master key

Optimal enumeration requires probabilities {...}

UCL Crypto Group

Main theorem (informal)

- PI(K; X, L) is directly proportional to the success rate of an adversary using Pr_{model}[k|I] as template
- e.g. PI(K; X, L) in function of the noise variance

As a result

Left of the intersection

• Countermeasure #2 more secure than first one

As a result

Right of the intersection

• Countermeasure #1 more secure than first one

In other words

• MI(K; L) measures the worst case data complexity

In other words

PI(K; L) is the evaluator's best estimate

Relation with data complexity

Theorem only proven in very specific cases

Relation with data complexity

Theorem only proven in very specific cases

UCL Crypto Group

But holds surprisingly well in all real-world settings

Summary

In theory:

- H[K|X, L] captures any leakage dependency
- It relates to the asymptotic success rate of the (strongest possible) Bayesian adversary

In practice:

- ► Computing H[K|X, L] requires to approximate the leakage pdf Pr[K|X, L] (not straightforward)
- ► Multivariate extension (H[K|X, L₁, L₂,..., L_d]) becomes even harder to estimate for large d's
- sampling_2D.m

Summary (II)

- The perceived information depends on:
 - The information leakage provided by the target chip
 - The difficulty to estimate the leakage distributions
- Good security evaluations should rely on the "best available" estimators for the distributions

First-order DPA

Theorem. The mutual information between two normally distributed random variables X, Y, with means μ_X, μ_Y and variances σ_X^2, σ_Y^2 can be expressed as:

$$\mathrm{I}(X;Y) = -\frac{1}{2} \cdot \log_2\left(1 - \rho(X,Y)^2\right)$$

- Previously: template attack \approx correlation attack
- Here: mutual information metric pprox correlation coef.
- Only holds for univariate distributions
- If the same leakage model is used !

First-order DPA (II)

Are leakage functions Gaussian?

- ▶ e.g. for Hamming weights, not exactly
- Approximation better holds for "large enough" noise
- sampling_1D_bis.m

Lemma. Let X, Y, and L be three random variables s.t. $Y = X + N_1$, and $L = Y + N_2$ with N_1 and N_2 two additive noise variables. Then, we have:

$$\rho(X,L) = \rho(X,Y) \cdot \rho(Y,L)$$

Lemma. The correlation coefficient between the sum of *n* independent and identically distributed random variables and the sum of the first m < n of these equals $\sqrt{m/n}$

Paper & pencil estimations (II)

- Assume $\rho(M_k, L)$ follows a normal distribution
- Assume Hamming weight leakage function
- Assume $\rho(M_{k^*}, L) = 0$ for wrong key candidates
- Assume that the number of samples needed to distinguish the key can be approximated with:

$$n=c\cdot\frac{1}{\rho(M_k,L)^2}$$

Example

- FPGA implementation of the AES
- ▶ 8-bit loop architecture is broken in 10 traces
- How does the complexity of the attack scales?
 - for a 32-bit architecture?
 - for a 128-bit architecture?
- How does it depend on the adversarial capabilities?
- What if the leakage function is not Hamming weight?

Second-order DPA

- Against a masked implementation, e.g. with 2 shares

executed operations

Distribution plots

UCL Crypto Group

IT analysis

- How does the attacks complexity evolve with N_m ?
- $N_{sr=90\%} \approx$

UCL Crypto Group

IT analysis

- How does the attacks complexity evolve with N_m ?
- $N_{sr=90\%} \approx (\sigma_n^2)$

IT analysis

- How does the attacks complexity evolve with N_m ?
- $N_{sr=90\%} \approx (\sigma_n^2)^{N_m}$ Why? {...}

IT analysis (II)

- Flaws due to physical defaults can be detected
 - Examples:

UCL Crypto Group

IT analysis (II)

- Flaws due to physical defaults can be detected
 - Examples: glitches, early propagation, ...

Conclusion

- Security evaluations of leaking devices in 2 steps
 - Information theoretic analysis (profiled)
 - Security analysis (profiled or not)
- Usually rely on heuristics
 - Because of practical limitations
 - e.g. estimating an *d*-dimensional distribution can be hard (i.e. require too many measurements)

Conclusion (II)

- There are "easy" contexts
 - e.g. univariate SCAs with additive Gaussian noise
- Protected implementations are harder to analyze
 - ▶ e.g. masking implies "mixture" distributions
- Cryptographer's goal: design efficient algorithms and implementations with bounded information leakage

Further readings

- S. Mangard, E. Oswald, T. Popp, Power Analysis Attacks (DPA book), Springer, 2007
- Recent results on side-channel attacks can be found in the proceedings of the CHES conference: http://www.sigmod.org/dblp/db/conf/ches/index.html
- ► *e.g.* correlation attacks, template attacks, collision attacks, masking schemes, higher-order attacks

Thanks

